

Welcome to tweedledum’s documentation!

	Installation
	Alpha Disclaimer

	Requirements

	Building the examples

	Building the documentation

	Tutorial

	Change Log
	Alpha-v1.0

	Acknowledgments

	References

Core Componetns

	The tweedledum philosophy

	The Standard Gate Set

	Gate interface API
	Mandatory types and constants

	Methods

	Network interface API
	Mandatory types and constants

	Methods

	Implementations
	Gate base

	Custom gates

	Networks

Algorithms

	Decomposition

	Synthesis

Indices and tables

	Index

	Module Index

	Search Page

Installation

tweedledum is a header-only C++-17 library. Just add the include directory of tweeldedum to your
include directories, and you can integrate it into your source files using

#include <tweedledum/tweedledum.hpp>

Alpha Disclaimer

tweedledum is in version Alpha. Hence, the software is still under active development and not
feature complete, meaning the API is subject to big changes. This is released for developers or
users who are comfortable living on the absolute bleeding edge.

Requirements

We tested building tweedledum on Mac OS and Linux using:

	Clang 6.0.0

	Clang 7.0.0

	GCC 7.3.0

	GCC 8.1.0.

If you experience that the system compiler does not suffice the requirements, you can manually
pass a compiler to CMake using:

cmake -DCMAKE_CXX_COMPILER=/path/to/c++-compiler ..

Building the examples

The included CMake build script can be used to build the tweedledum library examples on a wide
range of platforms. CMake is freely available for download from http://www.cmake.org/download/.

CMake works by generating native makefiles or project files that can be used in the compiler
environment of your choice. The typical workflow starts with:

mkdir build # Create a directory to hold the build output.
cd build

To build the examples set the TWEEDLEDUM_EXAMPLES CMake variable to TRUE:

cmake -DTWEEDLEDUM_EXAMPLES=TRUE <path/to/tweedledum>

where <path/to/tweedledum> is a path to the tweedledum repository.

If you are on a *nix system, you should now see a Makefile in the current directory. Now you can
build the library by running make.

All *.cpp files in the examples/ directory will be compiled to its own executable
which will have the same name. For example, the file examples/hello_world.cpp will generate
the executable hello_world.

Once the examples have been built you can invoke ./examples/<name> to run it:

./examples/hello_world

Building the documentation

To build the documentation you need the following software installed on your system:

	Python [https://www.python.org/] with pip and virtualenv

	Doxygen [http://www.stack.nl/~dimitri/doxygen/]

First generate makefiles or project files using CMake as described in the previous section.
Then compile the doc target/project, for example:

make doc

This will generate the HTML documentation in doc/html.

Tutorial

Todo

Finish writing

Change Log

Alpha-v1.0

	Initial network and gate interfaces:

	Gate implementations:

	Network implementations:

	Algorithms:

	I/O

	Utility data structures:

Acknowledgments

The tweedledum library is maintained by Bruno Schmitt with contributions from Mathias Soeken and
Fereshte Mozafari. Let me know if your contribution is not listed or mentioned incorrectly and
I’ll make it right.

References

	AAM17

	Matthew Amy, Parsiad Azimzadeh, and Michele Mosca. On the CNOT-complexity of CNOT-phase circuits. arXiv preprint arXiv:1712.01859, 2017. URL: https://arxiv.org/abs/1712.01859.

	AMMR13

	Matthew Amy, Dmitri Maslov, Michele Mosca, and Martin Roetteler. A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 32(6):818–830, 2013. URL: https://ieeexplore.ieee.org/abstract/document/6516700.

	DVVR08

	Alexis De Vos and Yvan Van Rentergem. Young subgroups for reversible computers. Advances in Mathematics of Communications, 2(2):183–200, 2008. URL: http://dx.doi.org/10.3934/amc.2008.2.183, doi:10.3934/amc.2008.2.183 [https://doi.org/10.3934/amc.2008.2.183].

	Mas16

	Dmitri Maslov. Advantages of using relative-phase toffoli gates with an application to multiple control toffoli optimization. Physical Review A, 93(2):022311, 2016. URL: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.93.022311.

	PMH08

	Ketan N. Patel, Igor L. Markov, and John P. Hayes. Optimal synthesis of linear reversible circuits. Quantum Information & Computation, 8(3):282–294, 2008. URL: http://www.rintonpress.com/xxqic8/qic-8-34/0282-0294.pdf.

The tweedledum philosophy

The Standard Gate Set

Below is a summary of the key gates used in tweedledum

	Name(s)

	Symbol

	tweedledum symbol

	Matrix

	Identity

	I

	gate_set::identity

	\(\pmatrix{1&0 \\ 0&1}\)

	Hadamard

	H

	gate_set::hadamard

	\(\frac{1}{\sqrt{2}}\pmatrix{1&1 \\ 1&-1}\)

	
Arbitrary rotations

	X Rotation

	Rx

	gate_set::rotation_x

	\(\pmatrix{\cos\frac\theta2 & -\mathrm{i}\sin\frac\theta2 \\ -\mathrm{i}\sin\frac\theta2 & \cos\frac\theta2}\)

	Y Rotation

	Ry

	gate_set::rotation_y

	

	Z Rotation

	Rz

	gate_set::rotation_z

	\(\pmatrix{e^{-\mathrm{i}\theta}&0 \\ 0&e^{\mathrm{i}\theta}}\)

	
Named Rotations

	Pauli X, NOT

	X

	gate_set::pauli_x

	\(\pmatrix{0&1 \\ 1&0}\)

	T

	T

	gate_set::t

	\(\pmatrix{1&0 \\ 0&e^{\mathrm{i}\frac\pi4}}\)

	T dagger

	T†

	gate_set::t_dagger

	

	Phase

	S

	gate_set::phase

	\(\pmatrix{1&0 \\ 0&\mathrm{i}}\)

	Phase dagger

	S†

	gate_set::phase_dagger

	

	Pauli Z, Phase flip

	Z

	gate_set::pauli_z

	\(\pmatrix{1&0 \\ 0&-1}\)

	
Controlled gates

	Control NOT

	CNOT

	gate_set::cx

	\(\pmatrix{1&0&0&0 \\ 0&1&0&0 \\ 0&0&0&1 \\ 0&0&1&0}\)

	Control Z

	CZ

	gate_set::cz

	\(\pmatrix{1&0&0&0 \\ 0&1&0&0 \\ 0&0&1&0 \\ 0&0&0&-1}\)

	Multiple Control NOT, Toffoli

	
	gate_set::mcx

	

	Multiple Control Z

	
	gate_set::mcz

	

Gate interface API

A Gate is an gate_base that is applied to a collection of qubits. Those qubits are identified
by a qid given by a network.

This page describes the interface of a quantum gate data structure in tweedledum.

Warning

This part of the documentation makes use of a class called gate. This class has been
created solely for the purpose of creating this documentation and is not meant to be used in
code.

Mandatory types and constants

A gate must expose the following compile-time constants:

static constexpr uint32_t max_num_qubits;
static constexpr uint32_t network_max_num_qubits;

The struct is_gate_type can be used to check at compile time whether a given type contains all
required types and constants to implement a network type. It should be used in the beginning of
an algorithm that expects a gate type:

template<typename Gate>
class network {
 static_assert(is_gate_type_v<Gate>, "Gate is not a gate type");
};

Methods

Constructors

	
class gate

	
Public Functions

	
gate(gate_base const &op, qubit_id target)

	Construct a single qubit gate.

	Parameters

	
	op: the operation (must be a single qubit operation).

	target: qubit identifier of the target.

	
gate(gate_base const &controlled_op, qubit_id control, qubit_id target)

	Construct a controlled gate.

	Parameters

	
	controlled_op: the operation (must be a two qubit controlled operation).

	control: qubit identifier of the control.

	target: qubit identifier of the target.

	
gate(gate_base const &unitary_op, std::vector<qubit_id> const &controls, std::vector<qubit_id> const &targets)

	Construct a gate using vectors.

	Parameters

	
	unitary_op: the operation (must be unitary operation).

	control: qubit(s) identifier of the control(s).

	targets: qubit identifier of the target.

Properties

	
class gate

	
Public Functions

	
uint32_t num_controls() const

	Return the number of controls.

	
uint32_t num_targets() const

	Returns the number of targets.

Iterators

	
class gate

	
Public Functions

	
template <typename Fn>
void foreach_control(Fn &&fn) const

	Calls fn on every target qubit of the gate.

The paramater fn is any callable that must have one of the following two signatures.
	void(qubit_id)

	bool(qubit_id)

If fn returns a bool, then it can interrupt the iteration by returning false.

	
template <typename Fn>
void foreach_target(Fn &&fn) const

	Calls fn on every target qubit of the gate.

The paramater fn is any callable that must have one of the following signature.
	void(qubit_id)

Network interface API

This page describes the interface of a quantum network data structure in tweedledum.

Warning

This part of the documentation makes use of a class called network. This class has been
created solely for the purpose of creating this documentation and is not meant to be used in
code. Custom network implementation do not have to derive from this class, but only need to
ensure that, if they implement a function of the interface, it is implemented using the same
signature.

Mandatory types and constants

The interaction with a network data structure is performed using four types for which no application
details are assumed. The following four types must be defined within the network data structure.
They can be implemented as nested type, but may also be exposed as type alias.

	
template <typename G>
class network

	
Public Types

	
template<>
using base_type = network

	Type referring to itself.

The base_type is the network type itself. It is required, because views may extend networks, and this type provides a way to determine the underlying network type.

	
template<>
using gate_type = G

	Type representing a gate.

A Gate is an operation that can be applied to a collection of qubits. It could be a meta operation, such as, primary input and a primary output, or a unitary operation gate.

	
struct node_type

	Type representing a node.

A node is a node in the network. Each node must contains a gate.

	
struct storage_type

	Type representing the storage.

A storage is some container that can contain all data necessary to store the network. It can constructed outside of the network and passed as a reference to the constructor. It may be shared among several networks. A std::shared_ptr<T> is a convenient data structure to hold a storage.

Further, a network must expose the following compile-time constants:

static constexpr uint32_t min_fanin_size;
static constexpr uint32_t max_fanin_size;

The struct is_network_type can be used to check at compile time whether a given type contains
all required types and constants to implement a network type. It should be used in the beginning
of an algorithm that expects a network type:

template<typename Network>
void algorithm(Network const& ntk) {
 static_assert(is_network_type_v<Network>, "Network is not a network type");
}

Methods

Constructors

	
template <typename G>
class network

	

Qubits and Ancillae

	
template <typename G>
class network

	
Public Functions

	
auto add_qubit(std::string const &qlabel)

	Creates a labeled qubit in the network and returns its qid

	
auto add_qubit()

	Creates a unlabeled qubit in the network and returns its qid

Since all qubits in a network must be labeled, this function will create a generic label with the form: qN, where N is the qid.

Structural properties

	
template <typename G>
class network

	
Public Functions

	
uint32_t size() const

	Returns the number of nodes.

	
uint32_t num_qubits() const

	Returns the number of qubits.

	
uint32_t num_gates() const

	Returns the number of gates, i.e., nodes that hold unitary operations.

Node iterators

	
template <typename G>
class network

	
Public Functions

	
template <typename Fn>
void foreach_cqubit(Fn &&fn) const

	Calls fn on every qubit in the network.

The paramater fn is any callable that must have one of the following three signatures.
	void(uint32_t qid)

	void(string const& qlabel)

	void(uint32_t qid, string const& qlabel)

	
template <typename Fn>
void foreach_cinput(Fn &&fn) const

	Calls fn on every input node in the network.

The paramater fn is any callable that must have one of the following two signatures.
	void(node_type const& node)

	void(node_type const& node, uint32_t node_index)

	
template <typename Fn>
void foreach_coutput(Fn &&fn)

	Calls fn on every output node in the network.

The paramater fn is any callable that must have one of the following two signatures.
	void(node_type const& node)

	void(node_type const& node, uint32_t node_index)

	
template <typename Fn>
void foreach_cgate(Fn &&fn) const

	Calls fn on every unitrary gate node in the network.

The paramater fn is any callable that must have one of the following four signatures.
	void(node_type const& node)

	void(node_type const& node, uint32_t node_index)

	bool(node_type const& node)

	bool(node_type const& node, uint32_t node_index)

If fn returns a bool, then it can interrupt the iteration by returning false.

	
template <typename Fn>
void foreach_cnode(Fn &&fn) const

	Calls fn on every node in the network.

The paramater fn is any callable that must have one of the following four signatures.
	void(node_type const& node)

	void(node_type const& node, uint32_t node_index)

	bool(node_type const& node)

	bool(node_type const& node, uint32_t node_index)

If fn returns a bool, then it can interrupt the iteration by returning false.

Implementations

Gate base

A custom gate implementation must derive from the gate_base class.

	
class gate_base

	Simple class to hold information about the operation of a gate.

Subclassed by tweedledum::mcmt_gate, tweedledum::mcst_gate

Custom gates

All gate implementations are located in tweedledum/gates/:

	Interface method

	mcst

	mcmt

	
	Constants

	max_num_qubits

	3

	32

	network_max_num_qubits

	
	32

	
	Properties

	num_controls

	✓

	✓

	num_targets

	✓

	✓

	
	Iterators

	foreach_control

	✓

	✓

	foreach_target

	✓

	✓

Networks

All network implementations are located in tweedledum/networks/:

	Interface method

	netlist

	
	I/O and ancillae qubits

	add_qubit

	✓

	add_ancilla

	

	
	Structural properties

	size

	✓

	num_qubits

	✓

	num_gates

	✓

	
	Iterators

	foreach_cqubit

	✓

	foreach_cinput

	✓

	foreach_coutput

	✓

	foreach_cgate

	✓

	foreach_cnode

	✓

Decomposition

Decomposition: is the process of breaking down in parts or elements.

High-level quantum algorithms are technology-independent, that is, allow arbitrary quantum gates,
and do not take architectural constraints into account. Quite often, these algorithms involve quantum
gates acting on n qubits. In order to execute such an algorithm in a quantum computer it is
necessary to decompose these gates in an series of simpler gates.

The tweedledum library implements several decomposition algorithms. The following table lists all
decomposition algorithms that are currently provided in tweedledum

Barenco decomposition

Header: tweedledum/algorithms/decomposition/barenco.hpp

Parameters

	
struct barenco_params

	Parameters for barenco_decomposition.

Algorithm

	
template <typename Network>
Network tweedledum::barenco_decomposition(Network const &src, barenco_params params = {})

	Barenco decomposition.

Decomposes all Multiple-controlled Toffoli gates with more than controls_threshold controls into Toffoli gates with at most controls_threshold controls. This may introduce one additional helper qubit called ancilla.

Required gate functions:
	foreach_control

	foreach_target

	num_controls

Required network functions:
	add_gate

	foreach_cqubit

	foreach_cgate

	rewire

	rewire_map

Direct Toffoli (DT) decomposition

Header: tweedledum/algorithms/decomposition/dt.hpp

Algorithm

	
template <typename Network>
Network tweedledum::dt_decomposition(Network const &src)

	Direct Toffoli (DT) decomposition.

Decomposes all Multiple-controlled Toffoli gates with 2, 3 or 4 controls into Clifford+T.
Also decompose all Multiple-controlled Z gates with 2 controls into Clifford+T. This may
introduce one additional helper qubit called ancilla.

These Clifford+T represetations were obtained using techniques inspired by [Mas16]
and given in [AMMR13]

Required gate functions:
	foreach_control

	foreach_target

	num_controls

Required network functions:
	add_gate

	foreach_cqubit

	foreach_cgate

	rewire

	rewire_map

Synthesis

The tweedledum library implements several synthesis algorithms. These take as input a function in
terms of some representation and return a reversible or quantum circuit. The following table lists
all synthesis algorithms that are currently provided in tweedledum.

	Function

	Description

	Expects

	Returns

	cnot_patel

	CNOT Patel synthesis for linear circuits.

	Linear matrix

	{CNOT} network

	dbs

	Reversible synthesis based on functional decomposition.

	Permutation

	Quantum or reversible circuit

	gray_synth

	Gray synthesis for {CNOT, Rz} networks.

	List of parities and rotation angles to synthesize

	{CNOT, Rz} network

	linear_synth

	Linear synthesis for small {CNOT, Rz} networks.

	List of parities and rotation angles to synthesize

	{CNOT, Rz} network

CNOT-Patel Synthesis for linear reversible functions

Header: tweedledum/algorithms/synthesis/cnot_patel.hpp

Parameters

	
struct cnot_patel_params

	Parameters for cnot_patel.

Public Members

	
bool allow_rewiring = false

	Allow rewiring.

	
bool best_partition_size = false

	Search for the best parition size.

	
uint32_t partition_size = 1u

	Partition size.

Algorithm

	
template <class Network, class Matrix>
Network tweedledum::cnot_patel(Matrix const &matrix, cnot_patel_params params = {})

	CNOT Patel synthesis for linear circuits.

This algorithm is based on the work in [PMH08].

The following code shows how to apply the algorithm to the example in the original paper.

std::vector<uint32_t> rows = {0b000011,
 0b011001,
 0b010010,
 0b111111,
 0b111011,
 0b011100};
bit_matrix_rm matrix(6, rows);
cnot_patel_params parameters;
parameters.allow_rewiring = false;
parameters.best_partition_size = false;
parameters.partition_size = 2u;
auto network = cnot_patel<netlist<mcst_gate>>(matrix, parameters);

	Parameters

	
	matrix: The square matrix representing a linear reversible circuit.

	params: The parameters that configure the synthesis process. See cnot_patel_params for details.

Warning

doxygenfunction: Unable to resolve multiple matches for function “tweedledum::cnot_patel” with arguments (Network&, std::vector<uint32_t> const&, Matrix const&, cnot_patel_params) in doxygen xml output for project “tweedledum” from directory: doxyxml/xml.
Potential matches:

- template <class Network, class Matrix>
 Network tweedledum::cnot_patel(Matrix const&, cnot_patel_params)
- template <class Network, class Matrix>
 void tweedledum::cnot_patel(Network&, std::vector<qubit_id> const&, Matrix const&, cnot_patel_params)

Decomposition-based synthesis (DBS)

Header: tweedledum/algorithms/synthesis/dbs.hpp

This synthesis algorithm is based on the following property of reversible functions:
Any reversible function \(f : \mathbb{B}^n \to \mathbb{B}^n\) can be decomposed into three
reversible functions \(f_r \circ f' \circ f_l\), where \(f_l\) and \(f_r\) are
single-target gates acting on target line \(x_i\) and \(f'\) is a reversible function that
does not change in \(x_i\).

Parameters

	
struct dbs_params

	Parameters for dbs.

Public Members

	
bool verbose = false

	Be verbose.

Algorithm

	
template <class Network, class STGSynthesisFn>
Network tweedledum::dbs(std::vector<uint32_t> perm, STGSynthesisFn &&stg_synth, dbs_params params = {})

	Reversible synthesis based on functional decomposition.

This algorithm implements the decomposition-based synthesis algorithm proposed in [DVVR08].
A permutation is specified as a vector of \(2^n\) different integers ranging from \(0\)
to \(2^n-1\).

std::vector<uint32_t> permutation{{0, 2, 3, 5, 7, 1, 4, 6}};
auto network = dbs<netlist<mcst_gate>>(permutation, stg_from_spectrum());

	Parameters

	
	perm: A permutation

	stg_synth: Synthesis function for single-target gates

	params: Parameters (see dbs_params)

Gray synthesis for {CNOT, Rz} circuits

Header: tweedledum/algorithms/synthesis/gray_synth.hpp

Parameters

	
struct gray_synth_params

	Parameters for gray_synth.

Algorithm

Warning

doxygenfunction: Unable to resolve multiple matches for function “tweedledum::gray_synth” with arguments (Network&, std::vector<uint32_t> const&, parity_terms const&, gray_synth_params) in doxygen xml output for project “tweedledum” from directory: doxyxml/xml.
Potential matches:

- template <class Network>
 Network tweedledum::gray_synth(uint32_t, parity_terms const&, gray_synth_params)
- template <class Network>
 void tweedledum::gray_synth(Network&, std::vector<qubit_id> const&, parity_terms const&, gray_synth_params)

	
template <class Network>
Network tweedledum::gray_synth(uint32_t num_qubits, parity_terms const &parities, gray_synth_params params = {})

	Gray synthesis for {CNOT, Rz} networks.

This algorithm is based on the work in [AAM17].

The following code shows how to apply the algorithm to the example in the
original paper.

	Return

	{CNOT, Rz} network

	Parameters

	
	num_qubits: Number of qubits

	parities: List of parities and rotation angles to synthesize

	params: The parameters that configure the synthesis process. See gray_synth_params for details.

Linear synthesis for {CNOT, Rz} circuits

Header: tweedledum/algorithms/synthesis/linear_synth.hpp

Parameters

	
struct linear_synth_params

	Parameters for linear_synth.

Algorithm

Warning

doxygenfunction: Unable to resolve multiple matches for function “tweedledum::linear_synth” with arguments (Network&, std::vector<uint32_t> const&, parity_terms const&, linear_synth_params) in doxygen xml output for project “tweedledum” from directory: doxyxml/xml.
Potential matches:

- template <class Network>
 Network tweedledum::linear_synth(uint32_t, parity_terms const&, linear_synth_params)
- template <class Network>
 void tweedledum::linear_synth(Network&, std::vector<qubit_id> const&, parity_terms const&, linear_synth_params)

	
template <class Network>
Network tweedledum::linear_synth(uint32_t num_qubits, parity_terms const &parities, linear_synth_params params = {})

	Linear synthesis for small {CNOT, Rz} networks.

Synthesize all linear combinations.

	Return

	{CNOT, Rz} network

	Parameters

	
	num_qubits: Number of qubits

	parities: List of parities and rotation angles to synthesize

	params: The parameters that configure the synthesis process. See linear_synth_params for details.

Open QASM 2.0

	
template <typename Network>
void tweedledum::write_qasm(Network const &network, std::string const &filename)

	Writes network in OPENQASM 2.0 format into a file.

Required gate functions:
	foreach_control

	foreach_target

	op

Required network functions:
	num_qubits

	foreach_cnode

	Parameters

	
	network: A quantum network

	filename: Filename

	
template <typename Network>
void tweedledum::write_qasm(Network const &network, std::ostream &os)

	Writes network in OPENQASM 2.0 format into output stream.

An overloaded variant exists that writes the network into a file.

Required gate functions:
	foreach_control

	foreach_target

	op

Required network functions:
	foreach_cnode

	num_qubits

	Parameters

	
	network: A quantum network

	os: Output stream

Quil

	
template <typename Network>
void tweedledum::write_quil(Network const &network, std::string const &filename)

	Writes network in quil format into a file.

Required gate functions:
	foreach_control

	foreach_target

	op

Required network functions:
	foreach_cnode

	foreach_cqubit

	num_qubits

	Parameters

	
	network: A quantum network

	filename: Filename

	
template <typename Network>
void tweedledum::write_quil(Network const &network, std::ostream &os)

	Writes network in quil format into output stream.

An overloaded variant exists that writes the network into a file.

Required gate functions:
	foreach_control

	foreach_target

	op

Required network functions:
	foreach_cnode

	foreach_cqubit

	num_qubits

	Parameters

	
	network: A quantum network

	os: Output stream

Write to qpic file format

	
template <typename Network>
void tweedledum::write_qpic(Network const &network, std::string const &filename, bool color_marked_gates = false)

	Writes network in qpic format into a file.

Required gate functions:
	foreach_control

	foreach_target

	op

Required network functions:
	foreach_cnode

	foreach_cqubit

	num_qubits

	Parameters

	
	network: A quantum network

	filename: Filename

	color_marked_gates: Flag to draw marked nodes in red

	
template <typename Network>
void tweedledum::write_qpic(Network const &network, std::ostream &os, bool color_marked_gates = false)

	Writes network in qpic format into output stream.

An overloaded variant exists that writes the network into a file.

Required gate functions:
	foreach_control

	foreach_target

	op

Required network functions:
	foreach_cnode

	foreach_cqubit

	num_qubits

	Parameters

	
	network: A quantum network

	os: Output stream

	color_marked_gates: Flag to draw marked nodes in red

Write to unicode string

	
template <typename Network>
void tweedledum::write_unicode(Network const &network, std::string const &filename)

	Writes a network in Unicode format format into a file.

Required gate functions:
	op

	foreach_control

	foreach_target

Required network functions:
	foreach_cgate

	num_qubits

	Parameters

	
	network: A quantum network

	filename: Filename

	
template <typename Network>
void tweedledum::write_unicode(Network const &network, std::ostream &os = std::cout)

	Writes a network in Unicode format format into a output stream.

Required gate functions:
	op

	foreach_control

	foreach_target

Required network functions:
	foreach_cgate

	num_qubits

	Parameters

	
	network: A quantum network

	os: Output stream (default: std::cout)

Angle

	
class angle

	Simple class to represent rotation angles.

A angle can be defined symbolically or numerically. The numeric value of a rotation angle is given in radians (rad).

Index

 T

T

 	
 	tweedledum::angle (C++ class)

 	tweedledum::barenco_decomposition (C++ function)

 	tweedledum::barenco_params (C++ class)

 	tweedledum::cnot_patel (C++ function)

 	tweedledum::cnot_patel_params (C++ class)

 	tweedledum::cnot_patel_params::allow_rewiring (C++ member)

 	tweedledum::cnot_patel_params::best_partition_size (C++ member)

 	tweedledum::cnot_patel_params::partition_size (C++ member)

 	tweedledum::dbs (C++ function)

 	tweedledum::dbs_params (C++ class)

 	
 	tweedledum::dbs_params::verbose (C++ member)

 	tweedledum::dt_decomposition (C++ function)

 	tweedledum::gate_base (C++ class)

 	tweedledum::gray_synth (C++ function)

 	tweedledum::gray_synth_params (C++ class)

 	tweedledum::linear_synth (C++ function)

 	tweedledum::linear_synth_params (C++ class)

 	tweedledum::write_qasm (C++ function), [1]

 	tweedledum::write_qpic (C++ function), [1]

 	tweedledum::write_quil (C++ function), [1]

 	tweedledum::write_unicode (C++ function), [1]

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/file.png

_static/plus.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to tweedledum’s documentation!

 		
 Installation

 		
 Alpha Disclaimer

 		
 Requirements

 		
 Building the examples

 		
 Building the documentation

 		
 Tutorial

 		
 Change Log

 		
 Alpha-v1.0

 		
 Acknowledgments

 		
 References

 		
 The tweedledum philosophy

 		
 The Standard Gate Set

 		
 Gate interface API

 		
 Mandatory types and constants

 		
 Methods

 		
 Constructors

 		
 Properties

 		
 Iterators

 		
 Network interface API

 		
 Mandatory types and constants

 		
 Methods

 		
 Constructors

 		
 Qubits and Ancillae

 		
 Structural properties

 		
 Node iterators

 		
 Implementations

 		
 Gate base

 		
 Custom gates

 		
 Networks

 		
 Decomposition

 		
 Synthesis

_static/up.png

